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Goniometric measurements are essential for the
determination of many optical quantities.
Quantifying the effects of errors in the rotation
axes on these quantities is a complex task. In this
paper, we show how a measurement model for a
four-axis goniometric system can be developed.
We then investigate how the uncertainties due to
several error sources propagate to the rotation
angles and then through to the measurement of bi-
directional reflectance.

GONIOMETRIC MEASUREMENTS

Many spectrophotometric and photometric quantities
depend critically on the geometry of measurement.
The bidirectional reflectance distribution function
(BRDF) for materials, for example, is a function of
the polar and azimuthal angles of incidence of light,
𝜃i and 𝜙i, as well as the polar and azimuthal angles
of detection of reflected light, 𝜃d  and 𝜙d .
Instruments for measurement of BRDF, therefore,
must contain four axes to span the parameter space.

Despite the best efforts of the instrument
designers, each rotation using these axes will be
subject to errors, including:
 displacement of the centres of rotation of the axes;
 misalignment (non-orthogonality) of the axes;
 angular resolution of the axis motors;
 angular accuracy of each axis;
 determining the zero angle of each axis.
This work describes an approach for assessing the
uncertainty of BRDF associated with these errors.

MEASUREMENT MODEL

To capture the effect of various errors on a measured
quantity, a measurement model must be constructed.
The measurement model expresses the measurand in
terms of all input parameters, including the errors
(even the errors have been corrected for, and the best
estimate is zero, they will carry a standard uncertainty
through the equations). The measurement equation
should account for the components of the system that
define the axes – for example in the MSL system, the
z-axis is defined by the incident beam and, therefore,
there is no uncertainty in the alignment of this beam,
but rather in all other axes relative to it.

If the rotations are controlled in a coordinate
system different to that of the measurand, the
transformations between coordinate systems are part
of the measurement model. For example, at MSL the
angle of a detector, 𝐷, is set on a slew ring and the
sample placed on orthogonal axes rotating about lab
x-, y- and z-axes by angles 𝑈, 𝑉  and 𝑊 . However,
BRDF is generally defined in 𝜃i, 𝜙i, 𝜃d, 𝜙d space.

The measurement equation(s) therefore consist,
in MSL’s case, of the following, considering only the
parameters relating to the four rotation axes:

Here: 𝐿 and 𝑙 are the true and measured distances
from the sample to the detector; 𝑑 is the measured
value of D; 𝐝  and Δ𝐝  define the slope of the
detector axis and its displacement from the origin; 𝐢′,
𝐣′, and 𝐤′ are rotated basis vectors and 𝐨′ is origin
rotated by angles 𝑢  , 𝑣  and 𝑤   about the axes
defined by the vectors 𝐮 , 𝐯 and 𝐰 displaced by
Δ𝐮, Δ𝐯 and Δ𝐰 respectively. The axis vectors and
displacements are given by (for example):

Δ𝐰 = ቂ𝐸Δ𝑊𝑥 , 𝐸Δ𝑊𝑦 , 0ቃ 𝐰 = 𝐤 − ቂ𝐸𝑊𝑥 , 𝐸𝑊𝑦 , 0ቃ,
where the 𝐸Δ𝑊 are displacement errors and the 𝐸𝑊
are misalignment errors. These errors are assumed to
be distributed with zero mean. The angles of rotation
about these axes are given (for example) by:

𝑤 = 𝑤 − 𝐸𝑊_resolution − 𝐸𝑊_accuracy − 𝐸𝑊_zero.
Here, 𝑤 is the measured angle to which the axis is
set and the 𝐸𝑊 are the last three errors identified in
the bullet points in the previous section.

The uncertainties associated with the five errors
identified have been included in the measurement
model and can be propagated through the coordinate
systems to the BRDF. The forms of the functions
given above can be found in the literature (e.g., [1]



for the transformation from 𝑈𝑉𝑊𝐷 to 𝜃i 𝜙i 𝜃d 𝜙d). 
The position of a point   𝐚  (expressed as a vector) 
after rotation about a displaced and misaligned axis is:

𝐚′ = 𝐑(𝐰ෝ, 𝑤)(𝐚 − Δ𝐰) + Δw,
where 𝐑(𝐰ෝ, 𝑤) is the rotation matrix for an angle 𝑤  
about the vector 𝐰ෝ (𝐰 normalised to unit length). To 
rotate the basis vectors, each end of the vector (the 
origin and the tip of the vector) should be rotated and 
their difference found. If the sample is on a three-axis 
stage, the rotation about the respective axes are 
carried out sequentially, and in an order that depends 
on the specifics of the system being used.

ERROR PROPAGATION

Three methods of error propagation through the 
measurement equations have been used and 
compared. Firstly, distributions have been assigned to 
each of the sources of error and Monte Carlo 
simulations have been carried out by drawing 
samples from those distributions and calculating the 
standard deviation of the results. Secondly, the 
sensitivity coefficients of the outputs on the error 
contributions (e.g., 𝜕𝜃i/𝜕𝐸𝑊𝑥) have been evaluated 
analytically and the GUM [2] methods used to 
propagate the uncertainties. Thirdly, the GTC [3] 
Python tool for the automatic propagation of 
uncertainty, has been used. It was found that all three 
methods produced the same propagated uncertainties. 
However, GTC was the most straightforward to use 
and delivers correlations between quantities (e.g., 
𝑢(𝜃i, 𝜙i)) without any additional effort. 

Figure 1 shows the standard uncertainty in 𝜃i, 
𝜙i, 𝜃d and 𝜙d as a function of the 𝑣 angle when 
𝑢  is 30°, 𝑤  is 0° and 𝑑  is 30°. The standard 
uncertainty associated with each displacement is 
0.02 % of the radius of the system, with each 
misalignment is 0.06° and with each accuracy is 0.05°. 
The resolution and zero position errors are negligible.

  BRDF AND TOTAL REFLECTANCE

Of more interest is the contribution of rotation errors 
on the final measurand: the BRDF or the integrated 
BRDF if, for example, total hemispherical reflectance 
is required. As a simple example, the uncertainty in 
BRDF of a Lambertian material measured in 0°:x° 
and in x°,180°:45°,0° geometries is shown in Fig. 2.

In the 0°:x° data we can see that propagated 
uncertainties increase with the sensitivity to 𝜃d (the 
uncertainty of which is found to be primarily due to 
the accuracy errors in the v and d axes). In the

Figure 1. Standard uncertainties of 𝜃i, 𝜙i, 𝜃d and 𝜙d 
as a function of the 𝑣 angle when the rotation 
uncertainties are as given in the text.

Figure 2. Standard uncertainties in the BRDF of 
Lambertian material measured in 0°:x° and in 
x°,180°:45°,0° geometries.

x°,180°:45°,0° data, on the other hand, where  𝜃d is 
fixed, the uncertainty is constant across most of the 
range and is dominated by the uncertainty in 𝐿 
induced by the misalignment of the w axis under a 
180° rotation.

If integrating, then covariances between the 
BRDF measured at one angle and that measured at 
another angle must be known for a robust estimate of 
the uncertainty. In this case, the intrinsic nature of the 
GTC package becomes invaluable as these are taken 
account of with no extra effort by the analyst. For 
example, when calculating the total reflectance of a 
Lambertian sample, the uncertainty is 0.06 %, 
dominated again by the uncertainty in 𝐿  but this 
time induced by the uncertainty in displacement of 
the d axis. 
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